142 lines
5.2 KiB
Python
142 lines
5.2 KiB
Python
import csv
|
|
from Levenshtein import distance
|
|
import pandas as pd
|
|
import uuid
|
|
|
|
|
|
# TODO Filter für Spalten, ggfs. Klasse benötigt
|
|
|
|
# TODO Filter für Dublikate hier wird dann die Klasse benötigt
|
|
|
|
|
|
def read_csv(file_path):
|
|
data = []
|
|
with open(file_path, newline='', encoding='utf-8') as csvfile:
|
|
reader = csv.reader(csvfile, delimiter=';')
|
|
for row in reader:
|
|
data.append((row[0].strip(), row[1].strip()))
|
|
return data
|
|
|
|
|
|
def similar_sets(pair, data):
|
|
similar_pairs = []
|
|
for item in data:
|
|
if distance(pair[0], item[0]) <= 1 and distance(pair[1], item[1]) <= 1:
|
|
similar_pairs.append(item)
|
|
return similar_pairs
|
|
|
|
|
|
def compare_csv(file1, file2):
|
|
data1 = read_csv(file1)
|
|
data2 = read_csv(file2)
|
|
|
|
common_pairs = set(data1) & set(data2)
|
|
unique_pairs1 = set(data1) - common_pairs
|
|
unique_pairs2 = set(data2) - common_pairs
|
|
|
|
return common_pairs, unique_pairs1, unique_pairs2, data1, data2
|
|
|
|
|
|
def find_similar_pairs(pair, other_data):
|
|
similar_pairs = []
|
|
for item in other_data:
|
|
if distance(pair[0], item[0]) <= 2 and distance(pair[1], item[1]) <= 2:
|
|
similar_pairs.append(item)
|
|
return similar_pairs
|
|
|
|
|
|
def create_uuid():
|
|
return str(uuid.uuid4())
|
|
|
|
|
|
def add_hl_tag(row):
|
|
klasse = str(row['klasse']).lstrip('0')
|
|
return 'HL0707116-' + klasse
|
|
|
|
|
|
def create_import_list(path, path_new, old_pairs, new_pairs, common_pairs):
|
|
system_data = pd.read_csv(path, sep=';', encoding='utf-8')
|
|
system_data = system_data[~system_data[['name', 'vorname']].apply(tuple, axis=1).isin(old_pairs)]
|
|
system_data = system_data.drop('username', axis=1, errors='ignore')
|
|
system_data = system_data.drop('klasse', axis=1, errors='ignore')
|
|
# print(len(system_data))
|
|
# print(system_data)
|
|
new_data = pd.read_csv(path_new, sep=';', encoding='utf-8')
|
|
|
|
# Bei Schüler: alte Klassen gelöscht, mit neuen Klassen aus new-data auffüllen
|
|
|
|
matches = new_data[~new_data[['name', 'vorname']].apply(tuple, axis=1).isin(new_pairs)]
|
|
matches.loc[:, 'klasse'] = matches.apply(add_hl_tag, axis=1)
|
|
# print(len(matches))
|
|
# print(matches)
|
|
system_data = pd.merge(system_data, matches, how='outer', left_on=['name', 'vorname'], right_on=['name', 'vorname'])
|
|
system_data = system_data[['name', 'vorname', 'klasse', 'schuelerid']]
|
|
# print(system_data)
|
|
print(len(system_data))
|
|
|
|
new_data = new_data[~new_data[['name', 'vorname']].apply(tuple, axis=1).isin(common_pairs)]
|
|
# new_data = new_data.drop('Unnamed: 2', axis=1, errors='ignore')
|
|
new_uuids = []
|
|
for row in range(len(new_data)):
|
|
new_uuids.append(create_uuid())
|
|
# Klasse?? Unterschied zwischen Lehrer und Schüler
|
|
# new_data['klasse'] = None
|
|
new_data.loc[:, 'klasse'] = new_data.apply(add_hl_tag, axis=1)
|
|
new_data.insert(loc=2, column='schuelerid', value=new_uuids)
|
|
mailUserQuota = 1024
|
|
oxUserQuota = 5120
|
|
oxContext = 27
|
|
|
|
# print(new_data)
|
|
print(len(new_data))
|
|
|
|
# vor dem merge daten ergänzen
|
|
# import_df = pd.merge(system_data, new_data, how='outer', left_on=['name', 'vorname', 'mailUserQuota', 'oxUserQuota', 'oxContext'], right_on=['name', 'vorname', 'mailUserQuota', 'oxUserQuota', 'oxContext'])
|
|
# import_df = pd.merge(system_data, new_data, how='outer',
|
|
# left_on=['name', 'vorname', 'klasse', 'schuelerid', 'mailUserQuota', 'oxUserQuota',
|
|
# 'oxContext'],
|
|
# right_on=['name', 'vorname', 'klasse', 'schuelerid', 'mailUserQuota', 'oxUserQuota',
|
|
# 'oxContext'])
|
|
import_df = pd.merge(system_data, new_data, how='outer',
|
|
left_on=['name', 'vorname', 'klasse', 'schuelerid'],
|
|
right_on=['name', 'vorname', 'klasse', 'schuelerid'])
|
|
import_df['mailUserQuota'] = mailUserQuota
|
|
import_df['oxUserQuota'] = oxUserQuota
|
|
import_df['oxContext'] = oxContext
|
|
|
|
# pd.set_option('display.max_rows', None)
|
|
# pd.set_option('display.max_columns', None)
|
|
# print(import_df)
|
|
# pd.reset_option('display.max_rows')
|
|
# pd.reset_option('display.max_columns')
|
|
out_path = '../Data/SaM/outputSchueler.csv'
|
|
import_df.to_csv(out_path, sep=';', index=False)
|
|
print(len(import_df))
|
|
print('Schüler Import Liste erzeugt')
|
|
print('Testuser manuell nachtragen!!')
|
|
|
|
|
|
def main():
|
|
file1_path = '../Data/SaM/export_schueler_SaM.csv'
|
|
file2_path = '../Data/SaM/sys_schueler_reduce.csv'
|
|
file3_path = '../Data/SaM/sys_schueler_SaM.csv'
|
|
|
|
common_pairs, new_pairs, old_pairs, data1, data2 = compare_csv(file1_path, file2_path)
|
|
|
|
print(f"Anzahl der übereinstimmenden Paare: {len(common_pairs)}")
|
|
print(f"Anzahl der neuen Einträge: {len(new_pairs)}")
|
|
print(f"Anzahl der veralteten Einträge: {len(old_pairs)}")
|
|
|
|
# Paare nur aus nicht zugeordneten Paaren aus neuer Liste erstellen
|
|
# for pair in data1:
|
|
# similar_pairs_list2 = find_similar_pairs(pair, set(data2) - {pair})
|
|
#
|
|
# if similar_pairs_list2:
|
|
# print(f"Ähnliche Paare in neuer Liste {pair} aktuell im System: {similar_pairs_list2}")
|
|
|
|
create_import_list(file3_path, file1_path, old_pairs, new_pairs, common_pairs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|