testlauf mit ggs daten
This commit is contained in:
63
src/compare.py
Normal file
63
src/compare.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import csv
|
||||
from Levenshtein import distance
|
||||
|
||||
# TODO Filter für Spalten, ggfs. Klasse benötigt
|
||||
|
||||
# TODO Filter für Dublikate hier wird dann die Klasse benötigt
|
||||
|
||||
|
||||
def read_csv(file_path):
|
||||
data = []
|
||||
with open(file_path, newline='', encoding='utf-8') as csvfile:
|
||||
reader = csv.reader(csvfile, delimiter=';')
|
||||
for row in reader:
|
||||
data.append((row[0].strip(), row[1].strip()))
|
||||
return data
|
||||
|
||||
|
||||
def similar_sets(pair, data):
|
||||
similar_pairs = []
|
||||
for item in data:
|
||||
if distance(pair[0], item[0]) <= 1 and distance(pair[1], item[1]) <= 1:
|
||||
similar_pairs.append(item)
|
||||
return similar_pairs
|
||||
|
||||
|
||||
def compare_csv(file1, file2):
|
||||
data1 = read_csv(file1)
|
||||
data2 = read_csv(file2)
|
||||
|
||||
common_pairs = set(data1) & set(data2)
|
||||
unique_pairs1 = set(data1) - common_pairs
|
||||
unique_pairs2 = set(data2) - common_pairs
|
||||
|
||||
return common_pairs, unique_pairs1, unique_pairs2, data1, data2
|
||||
|
||||
|
||||
def find_similar_pairs(pair, other_data):
|
||||
similar_pairs = []
|
||||
for item in other_data:
|
||||
if distance(pair[0], item[0]) <= 2 and distance(pair[1], item[1]) <= 2:
|
||||
similar_pairs.append(item)
|
||||
return similar_pairs
|
||||
|
||||
|
||||
def main():
|
||||
file1_path = '../GGS/ggsSnew.csv' # Pfad zur ersten CSV-Datei
|
||||
file2_path = '../GGS/ggsSold2.cvs' # Pfad zur zweiten CSV-Datei
|
||||
|
||||
common_pairs, unique_pairs1, unique_pairs2, data1, data2 = compare_csv(file1_path, file2_path)
|
||||
|
||||
print(f"Anzahl der übereinstimmenden Paare: {len(common_pairs)}")
|
||||
print(f"Anzahl der neuen Einträge: {len(unique_pairs1)}")
|
||||
print(f"Anzahl der veralteten Einträge: {len(unique_pairs2)}")
|
||||
|
||||
for pair in data1:
|
||||
similar_pairs_list2 = find_similar_pairs(pair, set(data2) - {pair})
|
||||
|
||||
if similar_pairs_list2:
|
||||
print(f"Ähnliche Paare zu {pair} in Liste 2: {similar_pairs_list2}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,5 +1,6 @@
|
||||
import pandas as pd
|
||||
import chardet
|
||||
import csv
|
||||
|
||||
|
||||
def check_file(path):
|
||||
@@ -38,3 +39,32 @@ def format_csv(path, type):
|
||||
except pd.errors.ParserError as e:
|
||||
# Wenn ein Parserfehler auftritt, gibt eine Fehlermeldung aus
|
||||
print(f"Fehler beim Einlesen der CSV-Datei: {e}")
|
||||
|
||||
|
||||
def clean_data(path, clean):
|
||||
try:
|
||||
# Lese den Header der CSV-Datei
|
||||
with open(path, 'r', newline='', encoding='utf-8') as csvfile:
|
||||
reader = csv.reader(csvfile, delimiter=';')
|
||||
header = next(reader)
|
||||
# Finde die Indizes der Spalten 'Name' und 'Vorname' und 'Klasse'
|
||||
name_index = header.index('name')
|
||||
vorname_index = header.index('vorname')
|
||||
klasse_index = header.index('klasse')
|
||||
|
||||
# Öffne die CSV-Datei im Schreibmodus und schreibe nur die gewünschten Spalten zurück
|
||||
with open(clean, 'w', newline='', encoding='utf-8') as csvfile2:
|
||||
writer = csv.writer(csvfile2, delimiter=';')
|
||||
|
||||
# Schreibe den neuen Header mit 'Name' und 'Vorname'
|
||||
writer.writerow(['name', 'vorname', 'klasse'])
|
||||
print(name_index, vorname_index, klasse_index)
|
||||
for row in reader:
|
||||
writer.writerow([row[name_index], row[vorname_index], row[klasse_index]])
|
||||
|
||||
print(f'Nur die Spalten "Name" und "Vorname" in der CSV-Datei {path} wurden beibehalten.')
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f'Die Datei {path} wurde nicht gefunden.')
|
||||
except ValueError:
|
||||
print(f'Die Spalten "Name" und "Vorname" wurden nicht gefunden.')
|
||||
|
||||
38
src/output.py
Normal file
38
src/output.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import csv
|
||||
|
||||
# Zielformat: ${nachname};${vorname};HL070${SCHOOL}-${klasse};${recordID};1024;${ox_quota};${ox_context}
|
||||
|
||||
|
||||
def create_output(path):
|
||||
schule = input('Schule: ')
|
||||
record_id = input('Record ID: ')
|
||||
mail_quota = input('Mail')
|
||||
ox_quota = input('OX Quota: ')
|
||||
ox_context = input('OX Context: ')
|
||||
|
||||
data = []
|
||||
with open(path, newline='', encoding='utf-8') as csvfile:
|
||||
reader = csv.reader(csvfile, delimiter=';')
|
||||
for row in reader:
|
||||
data.append((row[0].strip(), row[1].strip(), schule, record_id, mail_quota, ox_quota, ox_context))
|
||||
|
||||
csv_file_path = '../Data/output.csv'
|
||||
|
||||
with open(csv_file_path, 'w', newline='', encoding='utf-8') as csvfile:
|
||||
csv_writer = csv.writer(csvfile, delimiter=';')
|
||||
|
||||
# Schreibe die Header-Zeile (optional)
|
||||
# name;vorname;klasse;schuelerid;mailUserQuota;oxUserQuota;oxContext
|
||||
csv_writer.writerow(['name', 'vorname', 'klasse', 'schuelerid', 'mailUserQuota', 'oxUserQuota', 'oxContext'])
|
||||
# TODO UUID prüfen bzw generien
|
||||
# Schreibe die Daten aus dem Array in die CSV-Datei
|
||||
csv_writer.writerows(data)
|
||||
|
||||
print(f"CSV-Datei wurde erfolgreich erstellt: {csv_file_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
create_output('../Data/test_new.csv')
|
||||
|
||||
# TODO Leerzeilen löschen
|
||||
# TODO Klassenname umformatieren - HL070**** Nummer einfügen
|
||||
Reference in New Issue
Block a user